Optimal Four-Bar Linkage for the Stability and the Motion of the Human Knee Prostheses

نویسندگان

  • Nicola Sancisi
  • Raffaele Caminati
  • Vincenzo Parenti-Castelli
چکیده

The optimal design of human lower limb prostheses, in particular of knee devices, is fundamental in order to restore the lost functionality and aesthetic aspect of the amputee’s locomotion. Among all knee devices, the four-bar linkage is still the most widespread mechanism, since, despite its simplicity, it allows the prosthesis to be sufficiently stable and, at the same time, to replicate the natural motion of the joint with a sufficient accuracy. This paper presents an optimization procedure for the synthesis of a four-bar linkage for knee prosthesis. Starting from an experimental reference motion and given some patient-specific requirements related to his capacity to control and to stabilize the prosthesis, the procedure identifies the four-bar linkage that best-fits the experimental motion, at the same time respecting the given specifications. A case study is also presented which shows the potentialities of the proposed procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Polycentric above Knee Prosthesis

The optimal design of human lower limb prostheses, in particular of knee devices, is fundamental in order to restore the lost functionality and aesthetic aspect of the amputee’s locomotion. Among all knee devices, the four-bar linkage is still the most widespread mechanism, since, despite its simplicity, it allows the prosthesis to be sufficiently stable and, at the same time, to replicate the ...

متن کامل

Pareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm

Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...

متن کامل

A new modular six-bar linkage trans-femoral prosthesis for walking and squatting.

Four-bar linkage mechanisms produced by many designers of knee joints for trans-femoral prostheses can provide knee rotation to permit walking only. In Afro-Asian countries people are accustomed to a squatting posture in their daily activities. A six-bar linkage knee-ankle mechanism trans-femoral prosthesis is described which was developed and fitted to an amputee. The motion patterns of the an...

متن کامل

Dynamic Behavior Analysis of a Planar Four-bar Linkage with Multiple Clearances Joint

 In practice, clearances in the joints are inevitable due to tolerances, and defects arising from design and manufacturing. In the presence of clearance at a joint, a mechanism gains some additional, uncontrollable degrees of freedom which are the source of error. Moreover, joints undergo wear and backlashes and so cannot be used in precision mechanisms. In this study, the dynamic behaviour of ...

متن کامل

Enhancement of Articulated Heavy Vehicle Stability by Optimal Linear Quadratic Regulator (LQR) Controller of Roll-yaw Dynamics

Non-linear characteristic of tire forces is the main cause of vehicle lateral dynamics instability, while direct yaw moment control is an effective method to recover the vehicle stability. In this paper, an optimal linear quadratic regulator (LQR) controller for roll-yaw dynamics to articulated heavy vehicles is developed. For this purpose, the equations of motion obtained by the MATLAB sof...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009